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On the Computation of Complex Modes in Lossless

Shielded Asymmetric Coplanar Waveguides

Khwaja M. Rahman and Cam Nguyen

Abstract-We compute complex modes in Iossless shielded asymmetric

coplanar wavegnides (CPW’S) using the spectral domain technique. The
slot asymmetry is found to significantly affect the existence of the complex
modes. These modes are found to exist at low microwave frequencies even

when using materials with a low permittivity. We found that waveguide

modes degenerate into complex modes more frequently than CPW (T)

and slotline (c) modes. When the structures are highly asymmetrical

and when the dielectric substrates are thick or have a high permittivity,

the degeneration of lower-order c-modes into complex modes is detected.

Other forms of mode conversion, where a wavegnide mode is converted

to a c-mode, are also observed, especirdly in highly asymmetric structures

and when using dielectric materials of a high permittivity or of a large
thickness. Nmnericaf convergence of tbe complex modes’ propagation
coostauts is also examined.

I. INTRODUCTION

Since its discovery in 1969 by C. P. Wen [1], coplanar waveguide

(CPW) has been used widely for microwave integrated circuits
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(MIC’S) and monolithic microwave integrated circuits (MMIC’S) [2],

Among CPW’s, the asymmetrical version is very attractive since

it can provide additional circuit design flexibility and improved

characteristic impedance range, Various dynamic [3] and quasi-static

[4] analyses have been performed for asymmetric CPW’S. However,

the analysis of complex modes in asymmetrical CPW’s has not yet

been addressed. As will be seen, the existence of complex modes is

highly pronounced in asymmetrical CPW’s. They have been found

even at low microwave frequencies and in low permittivity substrates.

A thorough knowledge of these complex modes is thus very important

for the accurate design of MIC’s and MMIC’s using asymmetric

CPW’S in both low and high microwave regions.

In the past several years, complex modes in lossless waveguid-

ing structures have been studied by a number of researchers. The

presence of complex modes in lossless waveguiding structures was

first predicted for a circular dielectric-loaded waveguide [5], Later,

theoretical as well as experimental investigations were made on the

circular dielectric-loaded waveguide to confirm the existence of these

modes [6], [7]. Complex modes were also reported for lossless finlines

[8] and shielded rnicrostrip lines [9], [10].

We present in this paper au extensive investigation of complex

modes in lossless shielded three-layer asymmetric CPW’s using the

spectral domain approach (SDA) [11]. The effects of slot asymmetry,

and dielectric constant and thickness of dielectric materials on the

possible existence of complex modes, are described. Special attention

is given to the numerical convergence of the calculated complex

modes’ propagation constants. The developed analysis has been

applied to a symmetric CPW, and generated numerical results of

the propagation constants of several real modes agree well with

previously published data [12]. It should be noted here that our

considered three-layer asymmetric CPWs are generrd in that they

are applicable to both open and shielded CPW’s, both symmetry

and asymmetry in slots and ground planes, with and without a

back-side conductor, with and without dielectric overlay, and with

finite- and infinite-extent substrates. They can elude the energy

leakage or increase the single-mode operating range with properly

chosen dielectric substrates [131. It is therefore expected that these

asymmetrical CPW structures can be exploited to achieve MIC’s and

MMIC’s with enhanced performance and smaller size.

II. NUMERICAL RESULTS AND DISCUSSIONS

Complex modes in a lossless shielded three-layer asymmetric

CPWs with assumed infinitesimally thin metallization (Fig. 1) are

investigated using the SDA. Applying the SDA produces a system

of homogeneous linear equations. By setting the determinant of the

coefficient matrix of the resultant equations to zero, we can solve for

the propagation constants, T, of all of the eigenmodes. The vahtes of

~ will be searched in the complex plane, owing to the fact that it is

complex for complex modes. Due to the asymmetry in the structure,

both the CPW (m) and slotline (c) modes will be excited along with

the waveguide modes, leading to the possible existence of complex

n-, c-, and waveguide modes. These complex modes appear in pairs

and are formed when two evanescent modes degenerate into a pair of

modes having ~ = CY+ j~, and which propagate in the + directions

with a phase constant ~ and attenuation constant a. These respective

waves attenuate and grow exponentially with a as they propagate,

leading to no corresponding transmitted power. Their existence is

noticed when the root of the eigenvalue equation is complex, in spite

of the lossless transmission line assumption.
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Fig, 1, Asymmetric CPW cross section.

TABLE I
COMPARISONOF THE EFFECTIVEDIELECTRIC CONSTMNTSOF THE FIRST

THREEMODESrN A SYMMETRICCPW BETWEENOURANALYSIS
ANO [1’2]. C~I = E,3 = 1, E,Z = 9.6, hl = h~ = 3 mm,

hz=lmm, a=7.5mm, S=2 mm, Wl=WZ=l mm,
Gl=G~=5.5mm, f=30GHz, P= Q= L=M=3

%ff

Ref[12] Ours

Frmdarnent al First Second Fundamental

5.819 4.371 3.033 5.8175

To verify our method, we calculated the propagation constants of

the fundamental as well as the first and second higher-order real

modes for a symmetrical CPW, and compared them with the existing

data [12] in Table L Good agreement was obtained, as can be seen

in the table.

In all of the figures to be presented, the rr- and waveguide modes

are numbered in sequence: The fundamental mode is designated as

1; the first higher-order mode as 2; and so on. The c-modes are num-

bered separately. Furthermore, p-modes, c-modes, and waveguide

modes are labeled “ir, “ “c,” and “WG’ in the figures, respectively. In

order to make the figures less crowded, only propagation constants of

the c-modes taking part in the degeneration process are plotted. The

phase constants, ~, of the complex modes are identified by dashed

curves and are amplified 10 times to make the variations more visible.

Up to 18 modes were calculated in all of the considered structures.

The enclosure used in these structures is a WR-28 rectangular

waveguide having 2a = 3,556 mm and 2b = 7.112 mm.

Fig, 2(a) and (b) shows the effects of the slot asymmetry as well

as frequency on the propagation constants of the fundamental and

several higher-order modes, including the complex modes. In these

plots, the slot width WZ, line width S, and ground-plane width G2

are kept constant, while the slot width WI is varied. Various values

of WI from O. 127–1 .27 mm have been used. However, only the

results corresponding to WI = 0.127 and 1.27 mm are presented

here to illustrate the possible existence of the complex modes.

In Fig. 2(a), where WI = 0.127 mm, only waveguide modes are

found to degenerate into complex modes. Waveguide modes 4 and 5

degenerate into a complex conjugate pair at as low as 3 GHz, and

remain so until 58.2 GHz, when they change back into evanescent

modes. Modes 8 and 9, which have also been identified as waveguide

modes, degenerate into a complex conjugate pair at 20 GHz and
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Fig. 2. Dispersion characteristics of evanescent and complex modes in a

shielded asymmetric CPW as a function of slot asymmetry. S = 0.762 mm,
WZ = 0.508 mm, GZ = 0.889 mm, hl = hs = 3.429 mm, hZ = 0.254 mm,

&,l = E,3 = 1, S,Z = 2.2 mm. (a) WI = 0.127 mm. (b) WI = 1.27 mm.

change back to evanescent modes at about 93.3 GHz. When WI is

increased to 1.27 mm, corresponding to the dispersion curves drawn

in Fig. 2(b), the complex modes corresponding to waveguide modes 4

and 5 are found to exist between 25 and 56.5 GHz. Waveguide modes

8 and 9 now convert into c-modes and, in the range of 65–79.25 GHz,

they degenerate into complex modes. Moreover, a new pair of modes,

c-modes 6 and 7, are found to degenerate into a complex mode pair

within the frequency range of 32.5–89.6 GHz. The foregoing results

indicate that waveguide modes 4 and 5 are always found to degenerate

into a complex mode pair in all of the structures studied so far.

On the other hand, waveguide modes 8 and 9 are generally found

to convert into a complex mode patr for narrow slot widths (e.g.,

WI = 0.127 mm), and the c-modes are found to take part only in

the degeneration process for wide slot widths (e.g., WI = 1.27 mm).

Furthermore, within the 18 modes calculated, no p-modes are found to

take part in the degeneration process. Additionally, mode conversions

from waveguide modes to c-modes are observed only for highly

asymmetric structures.

The effect of different dielectric materials of the central layer,

including e, = 2.2, 2.94, 6.15, and 10.5, on the existence of complex

modes has also been investigated. Fig. 3(a) and (b) shows the results

for c, = 2.2 and 10.5, respectively. When the relative dielectric

constant is 2.2 (Fig. 3(a)), only the 4th and 5th waveguide modes

are found to degenerate into complex modes in the range of 25-47.5

GHz. However, when the relative dielectric constant is increased to
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Fig. 3. Dispersion characteristics of evanescent and complex modes in a

shielded asymmetic CPW versus different central layer’s pertnittivity. WI =

0.508 mm, S = 0.508 mm, W2 = 0.762 mm, G1 = 1.016 mm, hl = h3 =
3.429 mm, hZ = 0.254 mm, ~,1 = 6,3 = 1. (a) % = 2.2. @) :,2 = 10.5.

10.5 (Fig. 3(b)), waveguide modes 4 and 5 become complex for a

wider range from 15–54.25 GHz. In addition, waveguide modes 8

and 9 are rdso found to convert into complex modes in the range of

15-67.78 GHz, and c-modes 6 and 7 degenerate into a complex mode

pair over the 18.5–77.75 GHz range. For all of the cases considered

so far, waveguide modes 4 and 5 are always found to degenerate into

a complex mode pair. Moreover, lower-order c-modes are found to

degenerate into complex modes only when using dielectric materials

with a relatively high dielectric constant (e.g., c, = 10.5).

To demonstrate the effect of the central layer’s thickness on the

existence of the complex modes, we computed the eigenmodes’ dis-

persions using 2.2-permittivity substrates with thicknesses of 0.127,

0.254,0.508, and 0.7874 mm. The effect of using a thickness of 0.254

mm was described in Fig. 3(a), while the results for 0.7874 mm are

presented in Fig. 4. It is apparent that when the thickness is increased

from 0.254 to 0.7874 mm, waveguide modes 4 and 5 degenerate into

complex modes within 5–53 GHz. Furthermore, c-modes 6 and 7 were

also found to degenerate into complex modes from 4 to 74.5 GHz.

Additionally, rr-modes 8 and 9 were found to convert into complex

modes for a short range of 9–11 GHz, then change back to evanescent

modes. One of these p-modes undergoes a mode conversion and

becomes a c-mode within the range of 3545 GHz. This converted

mode, once again, degenerates into the complex modes by combining

with c-mode 6 at about 77 GHz, and remains so until 84.525 GHz,
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Fig. 4. Dispersion characteristics of evanescent and complex modes in the

same CPW structure of Fig. 3(a) against thickness of the central layer. h 2 =

0.7874 mm.

when both modes change back again into evanescent c-modes. In all

of the cases considered, lower-order waveguide modes are always

found to degenerate into complex modes, except when the thickness

is 0.127 mm. Furthermore, c-modes are found to convert into the

complex pair only for relatively thick dielectric materials.

In order to investigate the numerical convergence of our calculated

results, we also performed ample numerical tests. In all of the com-

puted results, we have used three basis functions for each slot, which

are sufficient for the considered structures for engineering purposes.

III. CONCLUSION

Calculations of possible complex modes existing in lossless

shielded three-layer asymmetric CPW’s have been presented based

on the spectral domain method. The existence of the complex modes

depends substantially on the asymmetry of the slots. These modes

are found to exist at low microwave frequencies, even with a low-

permittivity dielectric substrate. The waveguide modes are found to

degenerate into complex modes more often than the c- or z-modes.

We also found that lower-order c-modes degenerate into complex

modes only for highly asymmetric structures and for thick or high-

permittivity substrates. Additionally, conversions from waveguide

to c-modes are also found to exist in highly asymmetric structures

and when using dielectric materials of high pmrnittivity or of large

thicknesses. These findings suggest that, in order to properly design

MIC’S and MMIC’S employing asymmetric CPW’S, it is essential

to determine all of the complex modes possibly existing in the

asymmetric CPW’s, even when the operating frequency is low or the

dielectric substrate’s perrnittivity is small.
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Simple and Accurate Solutions of the Scattering

Coefficients of E-Plane Junctions in

Rectangular Waveguides

Anton Widarta, Shuzo Kuwauo, and Kinchi Kokubun

Abstract— Simple and accurate solution of the scattering coefficients

of the E-plane right-angle bend in rectangular waveguide is presented.
The solution is obtained by the mode-matching method in which the

electromagnetic fields in waveguides are matched with those in junction
section formed by a sectoral region. In the same procedure, the solutions
of the scattering coefficients of the E-plane T-junction and the cross
junction can be also obtained easily. By using the numerical results, the
scattering properties of the dominant modes and higher-order modes in
the E-plane right-angle bend are examined in detail.

I. INTRODUCTION

Rectangular waveguide junctions such as the right-angle bend, the

T-junction and the cross junction are representatives of fundamental

microwave circuits, which are applied to such as filters, multiplexer

[1], and power dividers [2]. It is desirable that the scattering properties

of these junctions are analyzed rigorously and that the obtained

solutions are simple, convenient, and highly accurate over a wide

frequency range.

The modeling of the above waveguide junctions is a canonical

problem, and numbers of analysis methods have been proposed.

Marcuvitz [3] represented the waveguide junction by an equivalent

circuit. However, since the solution is an approximate one, there are
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limits in usable bandwidth and accuracy. In order to improve the

equivalent circuits in [3], Lampariello and Oliner [4] presented new

equivalent circuits for open and slit-coupled T-junctions. In [5], the

T-junction boundary value problem is solved using equivalent circuit

concept and leading to a calculation of the equivalent admittance

matrix. The full numerical analyses, such as the finite-element method

[6] and the boundary-element method [7], are useful techniques but

require advanced computer processing.

On the other hand, the mode-matching method is a very efficient

method for the analysis of these problems. However, since the

electromagnetic fields in each junction section cannot be expanded

in terms of the modal functions of a rectangular waveguide, some

procedures are necessary in applying this method. Lewin [8] proposed

a new expansion function in which the junction section of the

right-angle bend is considered to be a region separated from the

waveguides, though he did not derive the solution. In [9], the junction

of the right-angle bend is divided into certain regions, and their

boundaries are appropriately shorted. Then, the electromagnetic fields

in the region are expanded in terms of the modal functions of a

rectangular coordinate system. Similar strategies have been used to

analyze the Z’-junction in [1], [2], and the hybrid junction in [10].

In the BCMM [11], instead of the point-matching [12], the contour-

integral matching method in [13] is applied for the rigorous analysis

of cascade arbitrarily shaped H-plane discontinuities in rectangular

waveguides.

This paper presents a simple and accurate solution of the scattering

coefficients of the 13-plaue right-angle bend in rectangular waveguide.

The solution is obtained by the mode-matching method in which

the electromagnetic fields in waveguide regions are matched with

those in junction section formed by a sectoral region [14], [15] at

the circumference boundary. This solution is expressed succinctly

in form of matrix, and the formulations of the matrix elements are

directly given. Hence, the solution is very simple and convenient.

Since the solution is obtained by rigorous analysis, the obtained

numerical results are highly accurate over a wide frequency range.

In the same procedure, the solutions of the scattering coefficients of

the 13-plane T-junction and the cross junction can also be obtained

easily. By using the numerical results, the scattering properties of the

dominant modes and higher-order modes in the 13-plane waveguide

right-angle bend are examined in detail.

II. THEORY

The rectangular waveguide I (region I) of width a and height bl

and the rectangular waveguide II (region II) of width a and height

bz are orthogonally joined to form an ~-plane right-angle bend as

shown in Fig. 1(a). Consider a TE1o mode is incident from region I

on the junction, and LSE1~ (n = O, 1,2,3, . ..) modes are scattered

back into regions I and II. The field expansions are given as follows:

The

The

where

incident wave is

(1)

scattered wave is

the indices r and v characterize the incidence region and
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